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Arithmetic Progressions 

By Kevin S. McCurley 

Abstract. We give explicit numerical estimates for the Chebyshev functions 4'(x; k, l) and 
G(x; k, l) for certain nonexceptional moduli k. For values of e and b, a constant c is tabulated 
such that 14'(x; k, l) - x/9p(k)l < ex/lq(k), provided (k, l) = 1, x > exp(c log2 k), and 
k > 10b. The methods are similar to those used by Rosser and Schoenfeld in the case k = 1, 
but are based on explicit estimates of N(T, X) and an explicit zero-free region for Dirichlet 
L-functions. 

1. Introduction. Let k and 1 be positive integers. The Chebyshev prime counting 
functions 4+(x; k, 1) and O(x; k, 1) are defined by 

O(x; k, 1) = E logp, {(x; k, 1) = E logp, 
p<x pa x 

p-I (mod k) pa / (mod k) 

where the sums extend over all primes p and prime powers pa, respectively. The 
prime number theorem for arithmetic progressions is equivalent to the statement 
that 

{(x; k, 1) = x/m(k) + o(x), x - , 

if k and I are fixed relatively prime integers. An alternative statement is that for any 
positive E there exists xo = x0(k, 1, E) such that 

I4(x; k, 1) - x/4(k)I < ex/,(k), x > x0. 

The purpose of this paper is to give explicit numerical estimates for x0(k, 1, E) for 
some values of k and e. 

The case k = 1 or 2 has been investigated in a series of papers by J. B. Rosser and 
L. Schoenfeld. The methods used in this paper are similar to those used by Rosser 
and Schoenfeld, and we shall make frequent reference to their work. 

The size of the error term in the prime number theorem depends on the location 
of zeros of the Riemann zeta function '(s). The estimates of {(x; 1, 1) in [10] and 
[11] are based on the computation of 3,502,500 zeros of c(s) and a zero-free region 
for c(s) of the type originally proved by de la Vallee Poussin. A similar situation 
exists in the case of the prime number theorem for arithmetic progressions, where 
the size of x0(k, 1, E) depends on the location of zeros of Dirichlet L-functions 
formed with characters modulo k. In the case of a fixed modulus k we can make use 

Received June 21, 1982. 
1980 Mathematics Subject Classification. Primary 1OH20, 10H08. 

(D1984 American Mathematical Society 
0025-5718/84 $1.00 + $.25 per paze 

265 



266 KEVIN S. McCURLEY 

of computational information concerning the zeros of L-functions modulo k in the 
same way that Rosser and Schoenfeld used information concerning the zeros of t(s). 
In the estimation of x0(k, 1, e) as k tends to infinity, we can no longer derive 
significant benefit from the mere computation of zeros, since it is no longer a finite 
computational problem to compute enough zeros. In this case we can base our 
estimates on the following explicit zero-free region. 

Let R = 9.645908801 and ek(S) = nXmod k L(s, X). 

THEOREM 1.1. There exists at most a single zero of Ekk(S) in the region {s = a + it: 
a > 1 - I/[R log max(k, kjtI, 10)]). The only possible zero in this region is a simple 
real zero arising from an L-function formed with a real nonprincipal character modulo 
k. 

If k is an integer for which there exists a real zero of ek(S) with f > I - 
I /( R log k), then we shall refer to k as an exceptional modulus. A proof of Theorem 
1.I appears in [5], as well as a further result concerning exceptional moduli. 

TABLE I 

b ? 1 .5 .2 .1 .05 .01 .005 .001 .0001 .0WOO1 

1 34.1.3 41.01 53.23 65.28 79.94 124.3 147. 2 208.3 313.3 41i3.5 

2 20.62 23.35 27.98 32.37 37.55 52.25 59.53 78.34 109. ' l.0 

3 18.85 18.51 21.29 23.88 26.84 34.92 38.82 48.74 64.88 83.19 

4 15.08 16.28 18.26 20.05 22.08 27.48 30.04 36.49 46.80 58.36 

5 14.04 14.98 16.51 17.88 19.94 2 3. 4 1 8 2_.97 37. i4 ;4 

6 13.36 14.12 15.37 16.47 17.69 20.83 22.33 25.t) 31.62 37.84 

7 12.86 13.52 14.58 15.50 16.49 19.09 20.28 23.23 27.81 32.78 

8 12.49 13.07 13.98 14.76 15.62 1.-;81 18.8-2 21.29 25.11 29.23 

9 12.20 12.73 13.52 14.21 14.94 16.86 17.72 19.85 23.Oq 26.58 

10 11.98 12.44 13.15 13.76 14.43 16.10, 16.87 18.71 21.54 24.57 

11 11.79 i2.20 12.85 13.38 13.99 15.47 16.15 17.81 20.30 22.96 

12 11.64 12.03 12.60 13.09 13.62 14.99 15.58 17.03 19.31 21.67 

13 11.50 11.84 12.37 12.83 13.32 14.55 15.10 16.44 18.48 20.60 

14 11.39 11.72 12.19 12.62 13.08 14.20 14.71 15.93 17.76 19.72 

!5 11.29 11.58 12.03 12.42 12.85 13.88 14.35 15.48 17.17 18.96 

4.0 10.93 11.14 11.48 11.76 12.08 12.81 13.16 13.97 15.15 16.41 

25 10.69 10.88 11.14 11.36 11.60 12.20 12.45 13.07, 14.00 14.95 

30 10.55 10.69 10.91 11.09 11.30 11.78 11.99 12.51 13.25 14.01 

35 10.44 10.55 10.74 10.90 11.08 11.46 1.65 12.08 12.72 13.37 

40 10.35 10.45 10.62 10.76 10.90 11.25 11. 1 11.79 12.32 12.89 

45 10.29 10.39 10.52 10.64 10.78 11.08 11.23 11.54 12.02 12.51 

50 10.24 10.33 10.45 10.56 10.66 10.95 11.06 11.37 11.78 12.22 

60 10.15 10.21 10.32 10.43 10.52 10.74 10.84 11.08 11.42 11.78 

70 10.08 10.14 10.23 10.32 10.40 10.59 10.68 10.89 11.17 11.47 

80 10.04 10.08 10.18 10.23 10.31 10.48 10.56 10.73 10.98 11.25 

90 10.00 10.04 10.11 10.18 10.23 10.41 10.45 10.61 10.85 i.n08 

100 9.96 10.01 10.07 10.13, 10.18 10.32 10.39 10.54 10.72 if) 93 
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The main result of this paper is the following: 

THEOREM 1.2. Let k be a nonexceptional modulus, and let (k, 1) = 1. For various 
values of E and b, Table 1 gives values of c such that 

(x; k, I)- (k) < (k) and 6(x; k, 1) - x(k) < (k) 

provided that k > job and x > exp(c log2 k). 

For any given values of - and b the methods of this paper will yield a value of c, 
but the methods are limited by the requirement that c > R. The methods could also 
be used to calculate an explicit constant A with the property that 

'P(k) |+(x; k, 1) - xk |<Ak/ lg exp -/ lg ), 
x (p(k) RAi R lg 

provided x > exp(R log2 k) and k is not exceptional. In the interests of brevity this 
will be deferred to a later paper. Later papers will also deal with the case k = 3 and 
implications of the generalized Riemann hypothesis. 

2. Estimates of N(T, X). Throughout this paper X will be a Dirichlet character 
modulo k, and XI modulo k, will be the primitive character which induces X. We 
write Xo for the principal character, and in this case we take k I and X, - 1. 
Note that 

(2.1) L(s, X) = L(s, XI) n17( - Xl(p)p ) 
pl k 

Define N(T, X) = N(T, XI) as the number of zeros p = / + iy of L(s, X) with 
0 < / < I and IYI < T. The main result of this section is the following. 

THEOREM 2. 1. Let T > I and X be a primitive nonprincipal character modulo k. If 
o < n 4,2. then 

(2.2) N(T, X) --log 2k| < Cl log kT+ C2, 
17 217e 

where 

I + 2iq 
(2.3) C1 = log2 

4 7log~( +2 lg'2+2~ 

(2.4) C2 = .3058 - .268 i + 4 log 2(l + 71) 2 log t(2 + 2,q) 

27 (3\ 2 2 2 
+ 

2 
log ~ 3-+ 2,qi 

Proof. The method of proof is essentially due to Backlund [2], with refinements 
due to Rosser [9] and the author. Assuming that +T does not coincide with the 
ordinate of a zero, consider the rectangle R with vertices at al - iT, a, + iT, 
I - + iT, and I - al- iT, where a, > 1. Then we have 

(2.5) N(T, X) = 2 A arg{(s, X), 
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where 

(2.6) (s, x) = () r( a )L(s, X), a = X(-1))/2. 

Let (C denote the portion of the contour in a > 1. From the functional equation of 
t(s, X) and (2.6) we obtain 

(2.7) AR arg t(s, X) = 2ALarg t(s, X) 

= 2[Aearg( ) + A,arg i(S a) + A. arg L(s, X)] 
ml7( 2! 

= 2Tlog + 4 l + 
a 

+ i 
T 

+ 2A? earg L (s, X). 

We shall apply Stirling's formula in the form 

logF(z) = (z - )logz - z + Iog2 lo+g 2 -j 

where 101 < I and larg zI < 17/2. This error term is well known and appears in Olver 
[6, p. 294]. Hence 

(2.8) Im logIF(- + + j-) = - log-~ + -~log[I +(2+1] ( * ) g ( 4 2 2 ) 2 2e 4 gt (2T )| 

+ 2a-I tan- 2j T- 4 1 + 2a 317 + a + i7j 

Denote the last three terms by ft(T), f2(T) and f3(T). If a = 0, then f1 and f2 are 
decreasing for T > 1, so that 

I X + f2 + f3I < If fl + 2+ 3 

< max{If1 (1) + f2 (1)1, If, (oo) + f2 (oo)i) + .2982 < .6909. 

If a = 1, then f, and f2 are positive, f, is decreasing, and f2 is increasing. The 
maximum value of f, + f2 occurs between T = 1.64 and T = 1.65, so that 

IfL +f2 +f3I < f(1.64) +f2(1.65) + 1 < .6425. 
31F3.25 

It follows from (2.5), (2.7) and (2.8) that 

(2.9) N(T, X) = I[Tlog 2k + 1.38180 + A.arg L(s, X)j- 
It remains to estimate A arg L(s, X). We divide e into 3 pieces e, C,2and C3 as 

follows: 

C1:2-iT to al-iT, 
C2: a-iT to l+ iT, 

e3:a1+iT to -+iT. 

We first estimate Ae3 arg L(s, X). In view of the fact that L(s9, X)-L (s. X-), an 
upper bound for the change in argument on C3 will also serve as an upper bound on 
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Co , provided the bound is valid for any primitive nonprincipal X modulo k. 
Let N be a positive integer, and define 

f(s) = 2[L(s + iT, X)N + L(s - iT, X)N] 

Note that 

f(a) = ReL(a + iT, X)N 

if a is real. Suppose f(a) has n real zeros in the interval 2< a < Ua. These zeros 
partition the interval into n + 1 subintervals, and on each subinterval the quantity 
arg L(a + iT, X)N can change by at most 17, since Re L(a + iT, X)N is nonzero on 
the interior of each subinterval. It follows that 

(2.10) IAe arg L(s, x)j = I1A. argL(s (n + 1) ( 
3 ~~N 3N 

We now estimate n from above. Let 0 < q < 2, and define a, = + 27 and 
ao = 1 + q. It follows from Jensen's theorem that 

(2.11) nlog2 < 
I 

317j/2 loglf(u0 + (I + 2q)eie)IdO - logff(uo)I. 

In order to estimate If(s)l we appeal to a result of Rademacher [8]. He proved that if 
-7 , a q 1 + 7, then 

kLIsL 1I\ (1 + -u)/2 

IL(s, X)l < (l2vT17 -( + 7) 

It follows that 

(2.12) 2 |/2 logif(ao + (I + 271)eie)IdO 
21T r/2 

< -j- - (I+ 2i ) cosOI og (kT+27)++?)do 
1 /2 2 7r 

+ 2 log2(l + q) 
N 

< - (I + 2'q)log(.74685kT) + 
N 

log 01 + 7), 

since T > I andn < 2 

If a > I + 7, then we use the trivial estimate 

If(s)I <. 2(1 + N, 

and it follows from (2.1 1) and (2.12) that 

(2.13) nlog2 < ( 2 q) log(.74685 kT) + Nlog (l + ) - loglf(aj)I. 

Now write L(uo + iT, X) = re'9. We choose a sequence of N's tending to infinity 
such that N4p tends to 0 modulo 27r. It follows that 

(2.14) lim = 1 
N-o L(o0 + iT, X) IN 
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Note that for a > I we have 

JL(s, X)J = Hli' - x(p)v-slV > H I+ -~u 
p p ( p ) ;a 

Hence from (2.10), (2.13), and (2.14) we obtain 

(2.15) lAe,argL(s,x)L 
I +2ij log(.74685kT) 2 log 2 

+ 27r log '(l + q) _ 7rlog t(2 + 2iq) 
log2 log2 

Finally we estimate the change along C2. If a > 1, then 

larg L(s, X)I < ilog L(s, X)I < log (u). 

Hence 

JA, arg L(s, x)J < 2log (, + 271). 

The result then follows from (2.9) and (2.15). 
Theorem 2.1 may be stated as well for imprimitive or principal characters. 

Henceforth we shall abbreviate N( T, X) as N( T), and furthermore we use 

F(T) = -log -T F, (T) =-log - 
T 

IT 21re' If 217e' 

R(T)= C1logkT+ C2, RI(T)=C1logk,T+ C,. 

COROLLARY 2.2. If T > 1 and Cl and C2 are as in Theorem 2.1, then 

(2.16) I N(T) - F,(T)l < R(T). 

Proof. If X is nonprincipal this follow immediately from Theorem 2.1, since 
N(T, XI) = N(T, X). If X = Xo is the principal character, then we appeal to a result 
of Rosser [91, who proved that (in our notation) 

(2.17) N(T,X0) - - log - 
off 27rfe 

3 .75, 0 < T 280 
< 5.75, 0<T 1467 

.274 log T + .886 log log T + 4.926, 2 < T. 

If a > 1, note that 

2 log t(a)-log (2a)= Elog( 1) 
p 

is decreasing in a. It follows that C2 is decreasing in 71, and 

(2.18) C2 > 5.365. 

If I < T < 280 or 280 < T < 1467, the result follows immediately from (2.17) 
and (2.18). If T > 1467, then by (2.17) and (2.18) it suffices to prove that 

(2.19) (l12 -.274) log T-.886 log log T + .439 > 0. 

The left side of (2.19) is increasing in T for T > 1467, and is positive for T = 1467. 
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3. Bounds for + (x; k, 1). Let k and 1 be positive integers with (k, 1) = 1. Our 
method of estimation for +(x; k, 1) is based on an "explicit formula" for certain 
integral averages of +(x; k, 1). This is the method used by Rosser [9] in the case 
k = 1, and reduces the problem to that of estimating certain sums involving zeros of 
Dirichlet L-functions. 

Before we state the explicit formula we require some notation. If X is a Dirichlet 
character modulo k, we use z(X) to represent the set of zeros p = / + iy of L(s, X) 
with 8 >, 0 and p * 0. Since XI is the associated primitive character, z(X1) is the 
subset of z(X) consisting of the zeros with ,/ > 0. We use b(X) for the constant term 
in the Laurent expansion of L'(s, X)/L(s,X) about 0, c(x) for the constant term in 
the expansion about -1, and m(X) for the order of the zero of L(s, X) at s = 0. 
Note that 

(3.1) 0 m m(x) w @(k) l logk ' (3.1) ~~~~~~~~ 
l~og2' 

where w(k) is the number of distinct prime factors of k. Unless otherwise indicated, 
a sum over X is to be interpreted as a sum over all characters modulo k. 

LEMMA 3.1. Let 4'1(x; k,l)= 1? f (t; k, 1) dt, wherex > 1. Then 

(3.2) 4i(x;k, l) X 2 + g(x) 
2cp(k) cp(k) x pe-z(x) P,(p + 1) 

+d,x + d2xlogx + d3logx + d4, 

where 
oo X -2_n_ + I1-a 

(3.3)g(x) = __ (12nI E (.-(k) X = 2n(2n - I + 2a) 

a = (I -X(-))/2 

(3.4) dil= (k) E k(l)[m(X) b(X)], 

-1 
(3.5) d2 = m _(x) Cp(k) x 

(3.6) d3 = 1 E X(l), lp(k)x() 

(3.7) d4= E_ 
()4(Ik)1j )(1 X) + )Ek X (l)[c(X) + 1]. 

Proof. A "smoothed" Perron inversion formula gives 

4'(x; k, 1) = f+ E m X?+ L(s,X)ds. 
p)(k) x 27 -i, s(s + )L( X)S 

The remainder of the proof involves an application of the residue theorem to express 
the contour integral as a sum of residues. The details justifying this appear in 
Ingham [4, pp. 68-74], and Prachar [7, pp. 224-228]. 
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For x > 1, define 

(3.8) E(x) = p(x; k, 1) - xlqp(k), 

and for m a positive integer, x + mh > 1, define 

0 0 

Further let 

i oo -2n+a 

(3.10) f(x)= (l) + d2logx + d, + d2. 
cp(k) ?I 2 

LEMMA 3.2. If I h I < (x- 1)/rm, then 

E,,,(x, h) 

- 1 1 ~~~~~~~~~ 
~(-iY0 '7(x +jh)p-""' 

cp(k) x Per(x) P(P +) (p + m) _O( 

+ .. 
(x + y, + ***+ Ym ) dy, 

... 
dym . 

Proof. We use induction on m. If m 1, it follows from (3.8), (3.9), and Lemma 
3.1 that 

E,(x, h) =fE(x + y) dy 
0 

= 1 ( k ) fi-X l ) E - (x + h) ) + d1h 
p(k) c pz(x) p(p + 1) 

+d2(x + h)log(x + h) - d2xlogx + d3log(x + h) 

-d3logx + g(x + h) - g(x). 

The result then follows for m = I from (3.3), (3.4), (3.5), (3.6), and (3.10). 
If m > 1, we have 

Em(x, h) = hEm(x + ym, h) dym 

q(k) ?x )PC-(X) P(p + 1) ..(P + m- I) 

x Y (1 ) ( , )J(x + ym +jh)P???Idym 
J+* 

+ j f. fh(x + y, + . + ymn) dy1 ... dymn 
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the term-by-term integration being justified by the fact that EP2Ez(x) I/lP(p + 1) 
converges. The sum onj may be written as 

l E (-I)M+p+(m I(x + jh)+ 

rn-I ~In MI 1\ 

+ p + m )(x + ih)p+nm 

I mM 

P + m (1) (-1)m+J+I ()(x +jh)p+m, 

and this completes the proof. 

LEMMA 3.3. If O < h < (x - 1)/m, then there exists a z such that 0 S z < mh and 

Em(X, h) mh z 
E(x + ) < h +2p(k) p(k)~ 

If 0 < -h < (x - 1)/m, then there exists a z such that mh < z S 0 and 

E(x+ z >,Em(x, h) rnmh z 
E(x +zY Z hm 2(p(k) p(k) 

Proof. Let G(t) = E(x + t) + t/p(k). If h > 0, then clearly there exists a z such 
that 0 S z S mh and 

G (z) S 
.. 

|^**|G(y, + ***+ y.) dy, 
... dym 

and this proves the first part. If h < 0, then there exists a z such that mh S z S 0 
and 

G(Z) > (.mj G(y, + * + Ym) dyI .. *dYm. 

LEMMA 3.4. If 0 < 8 < (x - 1)/(mx), then 

9p(k)Em (x,8X) ms 6 p(k) i(x;Ek( I) I < () m( x) + M 

Proof. In Lemma 3.3 we put h = Sx, and it follows that there exists a z > 0 with 

44x + z; k,l1) S (x +Em (x Sax) + m8s (p(k) + +S) m8xk 

but 4i(x; k, 1) S 4i(x + z; k, 1), so that this proves the upper bound. The lower 
bound is proved with h = -8x. 

This reduces the problem to the estimation of IEm(x, ?8x)I, for which we require a 
lemma. 

LEMMA 3.5. If di and d2 are defined by (3.4) and (3.5), and k is not exceptional, then 

Id, + d2I 
k 

logk + C3log2k + C41ogk + C5, 
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where 

(3.11) C1l = IC + 4, 
(3.12) C4 = 1IC2 + 2C, - 8, 

(3.13) C5 = C1 + 2C2 - 2. 

Proof. From (3.4) and (3.5) we obtain 

di + d2 = 2; X(l)b(X) 2 p(k) 

hence 

(3.14) Id1 + d2j 4 maxlb(X)1. 
x 

If Xo is the principal character modulo k, then 

L` (s, Xos) = (s) + Plogp L 
~~~~p1kpS- Ps 

and it follows that 

b(XO) = log2ir - 2 log P. 

Hence we have trivially 

Ib(Xo)I < log 2 ir + ' log k 4 log 2k, 

and the result follows from (2.18). 
If X is nonprincipal. then from (2.1) we obtain 

b(X)= b(X)-I E logp + X 
X(P)lg P 

2 PIk P1I Xi(p) 

If X,(p) * 1, note that 

11 - X(p)j) > I exp k()) 4 

hence 

(3.15) Jb(X)j -<, Jb(X )j + log p max 24 Ib(xI )I + 4 log k. 

From Davenport 13, p. 85J we have 

L( Xil) log 2( 2) + B(XI)+ Pe ( + 

If we subtract the same expression with s replaced by 2, we obtain 

b(XI) = L" (2, XI) + a - F, p2-P ~X/L ~ IO 
pEz(X1) p(2 - p) 

and it follows from (3.15) that 

(3.16) Ib(X)j -(2) + I + + + 
k 

- k. 
prEz(x,) IP(2 - p)l 4~lgk 
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It remains to estimate the sum on p. If IYI < 1, we use the fact that 

Ip(2 - p)l > (2 - 1) > 55 lo k' 

since k is not exceptional. It follows from (2.16) that 

(3.17) F, 2 < IlIlog kN(1) 
pz(Xi) IPJ(2 P)I 

< 11 (+ Cl )log2 k + 11( C2 -log 27e )log k. 

If IYI > 1, we use the estimate Ip(2 - P Y2, integrate by parts, and use (2.16) to 
obtain 

2 oo; dN(tr) 41l N( t)d 

Iyl> I 

< ( + 2C,)logk - 4 
log27r + C1 + 2CG. 

The lemma then follows from (3.14), (3.16), (3.17), and the fact that 1'(2)/t(2)1 < .57. 

THEOREM 3.6. If m is a positive integer, x > 2, 0 < 8 < (x - 2)/(mx), HI ) 1, and 
A,, (8) = 8 -m EU0(7)(1 + 18)?+ 1, then 

92(k) | 
k.pI) 

- (k) | ( 2 
)x PCZ(X) IPI 2 

1IyIS H 

x pEz(X) IP(P + 1) ... (p + m)I ' 

IYI> HJ 

where 

e log 2 + 4 log k + k + (C4?+ 1)logk + Cs + I] 

Proof. From Lemma 3.2 we obtain 

(3.18) | E,,,(x, _Sx)l < ,X=(7)(-I);'( ?j'x) mE 
,p(k) x pez(x) p(p + 1)..(p + m) 

+ fX f? * * + Ym) dy .. 4*Ym 

For the zeros with IYI > H the summand is bounded in absolute value by 

Ip(p + 1)... (p +m )I Z=o( i ) 
For the zeros with IYI < H, we write the summand inside the absolute values as 

p |+O 
+8 

+Y1 + y* + +Ym)p dy, . dym. p 
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The integrand satisfies 
rn 

1(1 +Y, + + YJ,)PI < I + F2 1yjl, 
.1= I 

so that the absolute value of the summand does not exceed 

X 6+mf (68xo+n 
(3.20) [| (I +y1 + +ym)dy. dyr= &" 8 /(1 + 2- 

If y > 1, then from (3.10) we obtain 
I oo -n 

if(Y)i < -< 2 2 + Id2l10gy + Id, + d21, 
,.= I 

since a = 0 for half of the characters and a = I for the rest. Hence for I Y,I < x and 
0 < 8 < (x - 2)/(mx) we have 

If(x +y,+ + +ym)I < 'log2 +d2Idog2x+Id1 ?d21. 

From (3.1) and Lemma 3.5 we obtain 

(3.21) 8X j 8x(x + y + *+ Ym) dyi . *dYm 

m[1 log k1 k < (Sx) - log 2 + I log 2x + log k + C3log2k + C4logk + C5]. 

The result then follows from Lemma 3.4, (3.18), (3.19), (3.20), and (3.21). 
In order to simplify the statements of results, we shall use the notation L = log k 

and H = kG. As in Rosser and Schoenfeld [10], we use 

K"(Z, Y) 2 I u exp[-2(u + )] du 

and also 
X- I/R10g kt 

tn+ I 

LEMMA 3.7. If k is not an exceptional modulus, k > 10, x > exp(XRL2), and 
A> (I + a,)2, then 

IpI < E2 + E3 + E4, 
prEz(x) 

where 

X 12~ 1 + 4a+C 2+2 +aL R(H) +R1+1 (3.22) E2= 2-/ 24 aL2 + _L + + 2R(I) + C) 

+x (kL + aL2), 

(3.23) E3 = rOp(H)R(H), 

and 

(3.24) 64 = 
T L(xL2 [r(-2, 1+ a L )-r(-2 XL)] 

-log21T[F(r-, aL) - F(-1, XL)]}. 
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Proof. Consider first the contribution from the zeros with 1 = 0. These zeros arise 
from the factors I - Xj(p)p-s in (2.1). Let Np(T) be the number of zeros of 
I - Xj( p)p-S in the region Isl < T. An elementary argument yields the estimate 

(3.25) Np( T) < 
T P + 2. 

Furthermore for each p there exists at most a single zero p * 0 within -r/log p of the 
origin, and for this zero we have IpI > 21T/k, log p. It follows from (3.25) that 

(3.26) pez <x P'pk 2+T7 ( 4T)2 < T7 
PE(=zx) IPI plk[ 21T IT 

(IT ) 21T T 
T2 + X 

fl=0 
MIYI I 

From (3.25) we obtain 

IHdN (t) 

pez(x) IPI plk 
t 

fl=0 p+kl 
I <1yl<H 

< E[N(H) +jHN<t)dt <1 (I + log H)L. 

It follows from (3.26) that 

I k L 2 3L L 
(3.27) -< - L + 2 -+-+-log H < kL + Llog H, 

,3=0 

IYIjH 

since k > 10. 
The zeros of L(s, X) with ,B > 0 are symmetrically located with respect to the line 

a = 2. Hence 

x__ I xI -' + t 

P(X,,1IPI 2 p I -Xi 
l I,<V I IyIV< I 

By Theorem 1.1 and the fact that k is not exceptional we have ,B> (log x) ,so that 
x,/,J is an increasing function of P3. It follows that 

1/i I x-IR x / 

(3.28) <?N(1)( x1/RL + 
IplI 1 - I R 

pEz(X0)~lR 

1V IRL 

= Nf(l)9>o( ) RL -l + N(l-/. 

For the zeros with 1 <IYI < H Theorem 1.1 yields 

(3.29) < 2 o(t) dN(t) + - dN(t). 
PEZ(XI II 2jH / 
I <I-yj<H 
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In the second integral we integrate by parts and apply (2.16) to obtain 

(3.30) j-dN(t) < N(H) - N(I) + F( H) log H I log2 H 

H + R(l) + C1(i- 

< N(H _-N(l) + I 
log 2 H + F(l) log H + R(l) + Cl. 

Integration by parts yields 

(3.31) H.. o(t) dN(t) 

- 2 1 f1H (t) dF1(t) + 
H 

Jf o(t) d[N(t) -F(t)] 

- 2 .(jTo(t) dF, (t) + .pq,o(H)[N(H) - F,(H)] 

- ..po(1)[N(l) - F,(1)] - 
H 

[N(t) - F(t)]q,O(t) dt. 

The condition A > (I + a)2 implies that (p;(t) > 0 for 1 t < H, and (2.16) yields 

I 
2jH[ N(t) - F, (t)] q? (t) dt 

< 2}Rj(t)4ol(t) dt < -R(H)f Hp;(t) dt 

= iR(H)[qo(H) - qO(l)]. 

It follows from (3.28), (3,29), (3.30), and (3.31) that 

(3.32) X1 
p :X) 1Ip 

IYI H 

< -1x/2{N (4) + N(1) + H og2H+ F(l) log H + R(l) + C} 

+ 
H 

)j1 (t) dF(t) + TO(H)R(H) 

I 
To( O) [NRL _ + F(l 

- 
)R (H )] 2 RL - +F1I 

RHj 

From (2.16) and the trivial estimate F(t) < (t log kt)/7r we obtain 

(3.33) N(H) + N() + 
I 

logg2H + F()RlogH + R(I) + C1 H +N(l+I+2HF2+L+H2 

l +4a+a2L 2+ R(H) < 
2-v L2 + L+ H + 2R(1) +Cl. 



EXPLICIT ESTIMATES FOR PRIMES IN PROGRESSIONS 279 

Furthermore we have 

N(I) + F( - R(H) < F(1) 
RL 

+ R(l) R(1) RL - I +Fl-R()F()RL - 1I RL - 1 Rl 

< (R )C,R lLI< 0 
7T(RL W )'R 

since L > log 10 and C1 > l/r log 2. The lemma then follows from (3.27), (3.32), 
(3.33) and the fact that 

(3.34) 1jPo() dF(t) = E4. 

LEMMA 3.8. If k > 10, x > exp(ARL2), and X < (m + 1)(l + a)2, then 

X1_ 
x#- 

pEz(Xi) IP(P + 1) *-- (P + m)I E5 + E6 + E7, 
jyI> H 

where 

(3.35) E5 = - -(I + a)L + 2R(H) + + 

(3.36) 66=kmL {4K2(2VXL, (I + a) ? ) 

lvfI~i mo K, (2A L, (I + a) 

+Clkx Ki (2m,+(L + L a)m 

and 

(3.37) E7 = R(H)rpm(H). 

Proof. From (3.25) and integration by parts we obtain 

(3.38) 
E 1 = E 

joodNp(t) 
p*z(x) 

I Y I I 1k H tm+ I 

ft=0 p t k, 
IYI' H 

p< 
Y. )m JH tm+ 

d t 
[ sm log p + 2m 

I tM+2 '7rMHm ~b~Hm+II pik pj k 

L [m+ l 21 4L 
Hm 7TM+ H log2 
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For the zeros with 8 > 0 we use Theorem 1.1 and the symmetric location of the 
zeros with respect to the line a o to obtain 

x- 

(3.39) p?Ez(Y. Ip(p + 1).. (p + m)I 
IyI>H IYI' H 

I 00 ~~~I 0.ox- 1/2 d() 
< 2 n (t) dN(t) + - tm+I dN(t). 

If we integrate by parts in the second integral and apply (2.16), we find that 

(3.40) 
ro dN(t) < -N(H) 

(3.40) I~FjH) ~ H R(H 

Hm+ { m 7rm2 m + 

< 
H" l (MF(H) + 2 H + 2R(H)+ 1 } 

< 
I I { H logkH + 2R(H) + m 

For the first integral we proceed as in (3.31) to obtain 

2frpm(t) dN(t) = 2fpm(t) dF1(t) + 9Pm (H)[F,(H) - N(H)] 

+ 2 |fFi(t) - N(t)]4p1(t) dt. 

The condition X < (m + 1)(1 + a)2 implies that q4p(t) < 0 for t > H, so we apply 
(2.16) and integrate by parts again to obtain 

2 pm(t) dN(t) < - | pm(t) dF(t) + qpm(H)R(H) 

+ I qpm+ I (t) dt =E6 + E7. 

The lemma then follows from (3.38), (3.39), and (3.40). 

THEOREM 3.9. Let k be a nonexceptional modulus, (k, I) = 1, k > ko > 10, m be a 
positive integer, 0 < 8 < (x - 2)/(mx), and x > exp(XRL2). Let (1 + a)2 < A < 

(m + 1)(1 + a)2 and 

(3.41) L> max 2 
1 
2a + log 2 T 2 + log2)- X-1a 1+a'- gj 

If X > m(l + a)2, then let 

(3.42) L> 2 + log 2T 
2VaX-m- 1 +a- 
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Then 

'( ) 4'(x; k, I) - x(k) 

< I + 
Ms 

ko[e2(ko) + e3(ko) + e4(ko)] + MS 

+El(ko) + Am(8)ko[E5(ko) + e6(kO) + E7(ko)]. 

Proof. We may assume that x = exp(XRL2), since our upper bound from Theo- 
rem 3.6 is decreasing in x. By Theorem 3.6 and Lemmas 3.7 and 3.8 it suffices to 
prove that (for fixed X, 71, m, and a) el(k) and kei(k), i = 2,..., 7, are decreasing in 
k. Of these, the functions el, kE2, and kE5 are easily shown to be decreasing in L. 

It follows from (3.41) that Lexp[L(l - X/(1 + a) - a)] is decreasing in L, and 
this suffices to prove that ke3 and ke7 are decreasing in L. 

From (3.24) we obtain 

21rke4(k) = j1 f(L, u) du, 

where 

f (L, u) = (L2U- Llog2-7) exp[(l -u L 

Note that for 1 < u < 1 + a we have 

( * j P[( U )] dLf ') 

< (L + 2)u + 1og 2- log2r - XL 
U 

< max\(L + 2)(I + a) + a g , L + 2 + 'log21r 

-log2r - XL < 0, 

by (3.41). Hence kE4 is decreasing in L. 
From (3.36) we obtain 

(3.44) 2ke6(k) gi(L,u)du+ Ci g2(L,u)du, 

where 

g1(L, u) = (L2u - Llog2Tr)exp[L(m + 1- mu --) 

g2(L, u) = Lexp{L[m + 2-(m + l)u--]) 

The first integrand satisfies 

d 9,(L. u) < L{(Lu - log2-r)(m + 1 i mu - + 2u} 

xexplL(m + 1-mu- < ?, 
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provided 

L > ~2 +log 2,yr 
/U+MU-M- I + 1 +a 

If I + a < X/m, this condition is met by (3.42) and if I + a > X/m, then it 
follows from (3.41). 

The second integral in (3.44) can similarly be shown to be decreasing provided 
L > (,A/(I + a) + (m + l)a -I)-. 

4. Computations. In this section we describe the methods used in the preparation 
of Table 1. Note that Theorem 1.2 gives estimates for O(x; k, l) as well as +(x; k, 1). 
By a result of Schoenfeld [I I], we have 

(4.1) 0 < {(x; k, 1) - O(x; k, 1) < {(x; 1,1) - 0(x; 1,1) 

< 1.001093x'2 + 3x'/3 

Hence we obtain the estimate 

G(x; k, 1) - X < 100 1093x"/2 + 3x' 13 + 4i(x; k, I) p(k) 
cp(k) pk 

and the extra terms are negligible for the range of x under consideration. 
Estimates for the incomplete gamma function and incomplete Bessel functions 

may be found in [1I I and [101. Upper bounds for K,(z, x) are provided by Lemma 
4, Lemma 5, (2.30), and (2.31) of [101. In addition, if x < 1, we can use Lemma 3 
combined with Lemma 4 and the asymptotic expansions of K,(z) (9.7.2 of [1]). A 
lower bound for K,(z, x) is provided by Lemma 4 or (2.22) and (2.33) of [10J, 
resulting in the estimate 

K, (z , x ) > 2z(I + 8, Y3 2z e) ] 

? + 16z ?51+)v :fez2dw} 

If x < 1, another method for bounding KI(Z, x) from below is to use (2.10) of 10J 
and 9.7.2 of [I]. Other methods for estimating K,(z, x) are available in [10] and (121, 
but in the interests of simplifying the computations these were not used in the 
preparation of Table 1. 

The choices of the parameters m, 7, a, and 8 are completely at our disposal. We 
used m = 2 since it seemed to give the best results. Tables 2 and 3 give the values of 
Xq and a used in the preparation of Table 1. The best values of a turn out to be only 
slightly less than /A - 1, and the choice a = /A - I would lead to results that are 
nearly as good. The major effect of q is to control the size of E3 and E-7. For this 
reason, and the fact that the best a is near A - 1, we chose 71 to minimize 
R(kA -'). 

This leaves only 6 to be chosen. For m = 2, the optimal 8 is approximately that 
which minimizes 

0(1 + wI + lOw2) + (48-2 + 128-' + 18)w2, 
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where 

WI = kE2 + kE3 + kE4-4 W2 = ke5 + kE6+ kE7 

We can then find 8 by elementary calculus. If 1 + w1 < 102w2, a minimum exists at 
the positive real root of 83 - a6 - 2a/3, where a = 12w2/(1 + w1 + lOw2). This 
leads to the choice 

8 = D + a/(3D), 

where 

D = a 
(1 + l <I l 

All computations were performed on the CDC Cyber Computer at Michigan State 
University, using double precision Fortran (approximately 28 significant decimal 
digits). We have listed in Table 1 only values of c for which we were able to find 
appropriate values of q and a, but Theorem 3.9 may actually yield slightly smaller 
values of c. 

TABLE 2 
11 

b \ 1 .5 .2 .1 .05 .01 .005 .001 .0001 .00001 

l .500o .500 .500 .500 .500 .500 .500 .4 36 .369 .321 

2 .500 .500 .500 .500 .497 .435 .413 .369 .321 .285 

3 .495 .476 .451 .430 .410 .369 .352 .321 .285 .255 

4 .411 .398 .379 .365 .351 .320 .308 .285 .255 .233 

5 .352 .342 .329 .318 .307 .284 . " 7 5) . 25, .233 .213 

e .308 .301 .291 .283 .274 .4-55 .249 .233 .213 .198 

7 .275 .269 .261 .254 .248 .233 .226 .213 .198 .183 

8 .249 .244 .237 .232 .226 .213 .208 .198 .183 .171 

9 .227 .223 .217 .212 .208 .197 .193 .183 .171 .162 

LS, ..208 .206 .201 .197 .193 .183 .179 .171 .162 .152 

11 .194 .191 .186 .183 .179 .171 .168 .162 .152 .144 

12 .180 .177 .174 .171 .168 .161 .159 .152 .144 .136 

13 .168 .166 .164 .161 .158 .152 .149 .144 .136 .129 

14 .159 .157 .154 .152 .149 .144 .141 .136 . 129 [24 

15 .150 .148 .145 .143 .141 .136 .134 .129 .124 .119 

20 .117 .116 .115 .113 .112 .109 .108 .105 .101 .097 

25 .096 .095 .094 .093 .092 .090 .089 .087 .085 .083 

30 .082 .082 .081 .080 .080 .078 .077 .076 .074 .072 

35 .071 .071 .070 .070 .069 .08 .068 .067 .065 .063 

40 .063 .063 .062 .062 .06) .061 .060 .059 .058 .057 

45 .056 .056 .056 .055 .055 .0.54 .054 .053 .052 .051 

50 .051 .051 .050 .050 .050 .049 .049 .048 .048 .047 

60 .043 .043 .042 .042 .042 .042 .041 .041 .041 .041 

/ 0 .038 .038 .038 .037 .037 .037 .037 .036 .036 .036 

s0 .033 .033 .033 .033 .033 .033 .033 .032 .032 .032 

')0 .030 .030 .030 .030 .029 .029 .029 .029 .029 .028 

100 .027 .027 .027 .027 .027 .026 .026 .026 .026 .026 
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TABLE 3 
a 

b 1 .5 .2 .1 .05 .01 .005 .001 .0001 .0000,1 

1 .879 1.06 1.345 1.599 1.873 2.564 2.879 3.584 4.584 5.584 

.461 .552 .700 .829 .969 1.296 1.451 1.791 2.281 2.786 

'3 .319 .383 .484 .564 .647 .851 .953 1.187 1.52.4 1.858 

'4 .246 .294 .369 .434 .480 .644 .717 .892 1.14.3 L.394 

5 .202 .242 .298 .338 .391 .5222 .579 .715 .915 1.114 

.6 .170 .207 .253 .286 .331 .431 .488 .599 .762 .932 

7 .149 .177 .214 .233 .287 .380 .412 .516 .653 .794 

8 .134 .153 .177 .207 .238 .323 .358 .445 .574 .694 

9 .123 .129 .160 .186 .2i3 .2811 .332 .406 .512 .617 

iO .106 .118 .146 .169 .195 .254 .281 .367 .463 . 557 

I .098 .116 .134 .154 .178 .232 .264 .335 .421 .508 

} 2 .085 .101 .124 .143 .2164 .21 .236 .288 .388 .466 

13 .085 .096 .115 .133 .153 .199 .219 .275 .360 .432 

14 .075 .089 .108 .125 .143 .186 .204 .249 .326 .402 

15 .070 .083 .101 .117 .134 .174 .191 .232 .302 .375 
.20 .048 .064 .067 .091 .089 .133 .147 .177 .228 .285 

25 .045 .046 .055 .063 .072 .108 .119 .143 .178 .228 

3') .033 .039 .047 .054 .061 .091 .099 .120 .15(1 .185 

35 .030 .033 .041 .047 .053 .072 .U82 .104 .129 .154 

40 .026 .030 .036 .042 .047 .063 .076 .091 .113 .135 

45 .024 .027 .033 .037 .042 .062 .058 .081 .101 .1210 

SO .022 .025 .030 .034 .038 .048 .058 .074 .091 .109 

60 .018 .021 .025 .029 .033 .041 .045 .062 .077 .091 

70 .016 .018 .021 .025 .028 .035 .039 .046 .066 .078 

80 .015 .016 .020 .021 .024 .031 .034 .047 .057 .069 

90 .013 .015 .017 .020 .071 .028 .032 .042 .052 .062 

loo .012 .013 .015 .018 .020 .025 .027 .033 .047 .056 

The conditions (3.41) and (3.42) fail to hold for several entries of Table 1, and this 
required a check of all values of k up to a point where (3.41) and (3.42) were in 
effect. 

This paper is based on the work contained in the author's Ph.D. thesis, written 
under the direction of Professor Paul T. Bateman at the University of Illinois. The 
author acknowledges with gratitude many valuable discussions with Professor Bate- 
man. 
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